Distributor: NCOMOTC 5 Rue de la Plaine 78860 Saint-Nom-la-Bretèche FRANCE +33 1 30 64 15 81 www.neomore.com

The Discovery logic analyzer series, PGY-LA-EMBD has the built-in capability to debug I2C protocol, SPI protocol, UART, and many other serial protocols. This is a PC-based logic analyzer designed for professional engineers. The Discovery logic analyzer is used to debug embedded systems, the logic analyzer not only reduces the workbench area but also allows it to have a very small form factor and can be used to debug failures in the field. The protocol decode capabilities are designed to debug the logic and protocol issues faced by embedded design teams in the consumer, industrial, home automation, health, and education sectors.

PGY-LA-EMBD is an industry-first logic analyzer in its category which enables engineers to debug timing problems and perform simultaneous protocol analysis of I2C, SPI, UART or I3C, SPMI, and RFFE and also has support for CAN, CAN FD in embedded designs. This enables designers to debug circuit-level and system-level problems quickly.

PGY-LA-EMBD offers 1GS/Sec Asynchronous (timing) data and 100MHz Synchronous (state) data capture which makes it an ideal debug tool to address digital design problems. Designers can now easily analyze setup and hold time issues, glitches and synchronous data activities apart from analyzing protocol issues.

Current generation embedded designers need to collect data from multiple interfaces such as I2C, SPI, UART, I3C, SPMI, RFFE, CAN and , CAN FD and process it to achieve optimal performance of their design. Embedded design teams needs to take timely action to meet the intended objectives of the product. PGY-LA-EMBD decodes I2C, SPI, UART or I3C, SPMI, RFFE and CAN, CAN FD bus and displays the protocol activity with time stamp information. PGY-LA-EMBD is an ideal instrument to debug hardware and embedded software integration issues and optimize the software performance.

Multiple Markers enable smart delta measurements which are key to designers. Zoom enables users to look at specific areas of the signal.

Key Features

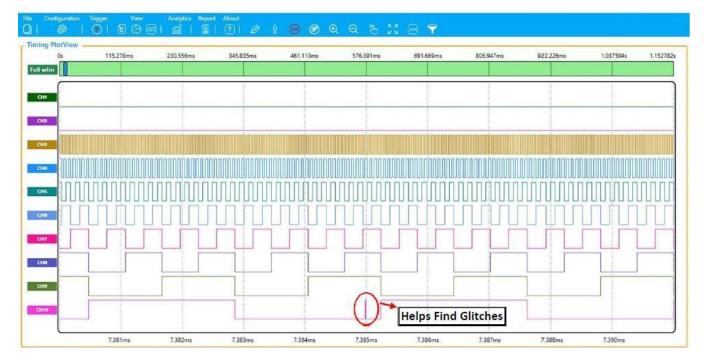
- ✤ 16 channels with Protocol and Logic Analysis capability.
- ♦ 1GS/Sec Timing (Asynchronous) Analysis.
- ♦ 100MHz State (Synchronous) Analysis.
- Simultaneous Protocol Analysis of I2C-SPI-UART and I3C-SPMI-RFFE and CAN, CAN-FD
- Detailed Trigger capabilities: Auto, Pattern, Protocol aware (I2C, SPI, UART, I3C, SPMI, RFFE, CAN) and Timing (Pulse Width and Delay Trigger).
- Smart streaming of data from Protocol Analyzer to host computer for long duration capture using USB 3.0 interface.
- ♦ Innovative easy to use Graphical user interface.
- ♦ Error Analysis of Protocol packet.
- ♦ Provides Timing, Waveform, Listing and Protocol listing views.
- Detailed filtering capability for protocol decoded data.
- ♦ PDF and CSV report format.
- ♦ API support.

Product SETUP

Easy To Configure

LA + PA Mode											⊖ PA M	lode									🔿 LA Mode
tup - LA + PA Mode	- Sampling	Rate							0 25	50 MS/s					O 500 I	MS/s					1000 MS/s
tup - LA + PA Mode ☑ I2C/SPI/UART	- Protocol S	Selection		12C				SPI				UART		🗌 13C		SPMI	II			RFFE	
	Eow RT Baud Rate nal) 30 Odd		on																		
tup - LA + PA Mode	- Channel S	_	снз) (сн4) (сн5)	СНб	(сн7) (о	тна) (сн9) (СН10)	(CH11)	(CH12) (C		414) (CH15) (CH16)	Ĩ		Signal	Threshold Set	ttings			
SCL SDA	_	(H2) () (CH5) (0) (0)	•	•	HB) (H9	•) (H11) () ()	0) (CH16) (0) (0)		Voltage			ttings (TH5/CH6)	(СН7/СН8) 1.8V 🗸		
g SCL	 (H1) () ()	(H2) () () () () () () () () () () () () ()	CH3) (CH4					•		••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••<l< td=""><td></td><td></td><td>000</td><td></td><td>Voltage Voltage</td><td>(CH1/CH2) ((</td><td>(H3/CH4) (</td><td>CH5/CH6</td><td></td><td></td><td></td></l<>			000		Voltage Voltage	(CH1/CH2) (((H3/CH4) (CH5/CH6			
SCL SDA MISO MOSI	CHIOOO		CH3) (CH4	•	•				•				0			(H1/(H2) ((1.8V ~ (H9/(H10) ()	CH3/CH4) (1.8V ~ CH11/CH12) (CH5/CH6) 1.8V ~ CH13/CH14)	1.8V V (CH15/CH16)		

Users can easily configure the Logic Analyzer for embedded interfaces by either selecting Logic Analysis (LA) mode or Protocol Analysis (PA) mode or a combined (LA+PA) mode. This ensures a quick and easy way to configure the product and look at complex problems at system level either in Logic Analysis (State Analysis, Timing Analysis) or Protocol decoding or both. Save and Recall capability ensures designers can recall their custom setup details.

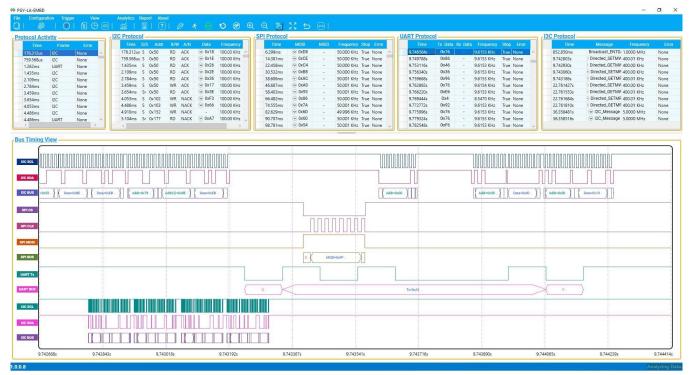

Multiple Domain

Multiple domain Views provide the necessary complete view of all supported interface states, timing and protocol activity. Users can easily setup the analyzer to view timing, logic and decode views to enable easy insights to the design. Users can set different trigger conditions from the setup menu to capture Timing and Protocol activity at specific events. The decoded results can be viewed in Timing, Logic and Protocol listing window with auto correlation. This comprehensive view of information makes it industry's best, offering an easy to use solution to debug the embedded interfaces protocol activity and analyze timing issues. Multiple cursors help designers to look into details of their design performance.

Timing View

Timing view is a unique capability of the PGY-LA-EMBD which enables designers to get detailed insights into their signal's timing information. The timing view uses an internal clock signal to plot the waveform. The flexible sampling rate selection enables designers to investigate Glitches that can cause issues in the functioning of their designs. The grouping feature enables designers to group various related signals for better viewing and analysis. Marker and Zoom features make it convenient to analyze any timing errors.

Ability to analyze any point in the captured data record ensures easy debugging and analysis over a long capture duration.


State View/Waveform Listing View

antiguration	Trigger View	Analytics F	Report About		1) @ (57 6 0			
						4 4 0	<u> </u>			
ers										
ers	M1 🗸 To M2 🗸	Os M	13 v To M4	✓ Os	M5 V To	M6 🗸 Os	Data For	mat Hex V		
Sample	Timestamp	CH16-UART T	X CH15-SPI Clk	CH14-SPI MOSI	CH13-SPI CS	CH12 -I2C Data	CH11-I2C Clk	CH10-I3C Data	CH5-I3C CIK	
0	0s	1	0	0	1	1	1	1		
1	171.320us	1	0	0	1	0	1	1	1	
2	176.312us	1	0	0	1	0	0	1	1	
3	179.128us	1	0	0	1	1	0	1	1	
4	181.608us	1	0	0	1	1	1	1	1	
5	186.312us	1	0	0	1	1	0	1	1	
6	188.816us	1	0	0	1	0	0	1	1	
7	191.608us	1	0	0	1	0	1	1	1	
8	196.312us	1	0	0	1	0	0	1	1	
9	199.128us	1	0	0	1	1	0	1	1	
10	201.608us	1	0	0	1	1	1.	1	1	
11	206.312us	1	0	0	1	1	0	1	1	
12	208.816us	1	0	0	1	0	0	1	1	
13	211.608us	1	0	0	1	0	1	1	1	
14	216.312us	1	0	0	1	0	0	1	1	
15	221.608us	1	0	0	1	0	1	1	1	
16	226.312us	1	0	0	1	0	0	1	T	
17	231.608us	1	0	0	1	0	1	1	1	
18	236.312us	1	0	0	1	0	0	1	1	
19	241.608us	1	0	0	1	0	1	1	1	
20	246.320us	1	0	0	1	0	0	1	T	
21	249.128us	1	0	0	1	1	0	1	1	
22	251.608us	1	0	0	1	1	1	1	T	
23	256.320us	1	0	0	1	1	0	1	T	
24	256.464us	1	0	0	1	0	0	1	1	
25	261.608us	1	0	0	1	0	1	1	1	
26	266.320us	1	0	0	1	0	0	1	1	
27	273.536us	1	0	0	1	0	1	1	1	
28	278.240us	1	0	0	1	0	0	1	1	
29	283.536us	1	0	0	1	0	1	1	1	
30	288.240us	1	0	0	1	0	0	1	1	
31	293.536us	1						1	1	
32	298.240us	1	0	0	1	0	0	1	1	
33	298.720us	1	0	0	1	1	0	1	1	
34	303.536us	1			1	1		1	1	
35	308.240us	1	0	0	1	1	0	1	1	
36	313.536us	1			1	1	1		1	
37	318.240us	1			1	1	0	1	1	
38	318.400us	1	0	0	1	0	0	1	1	
39	323.536us	1						1	1	
40	328 240uc	1		0			0			

State view helps designers to see the actual signal behavior. Using the device clock as reference, it provides the plot of clock and data signals with bus diagram. Grouping of signals ensures designers have the flexibility to view signals together. All signals are time correlated to help look into setup and hold times, pulse width, missing data, etc. which are very critical for digital designs as designers look to optimize their codes.

Protocol Decode View

Imme Frame Error 12.522344s CAN None 12.523344s CAN None 12.523344s CAN None 12.523344s CAN CAN None 12.523344s CAN CAN None 12.523344s CAN CAN None 12.775339s CAN None 12.775339s CAN None 12.7775339s CAN None 12.7775339s CAN None 12.7775339s CAN None 12.777339s CASE CAN DataFrame 1.0108 MHz 12.7778339s CASE								50	CAN Protocol		vity	ocol Act
L2.523344 Ox68 Ox0 Ox2 Ox55 Ox65F6 DataFrame 1.0126 MHz Image: MHz	Error Typ	Frequency	Frame Type	CRC	Data	DLC	IDE	ID	Time	Error		
12.523344s CAN None 12.523344s Ox0 Ox2 \odot 0x55 Ox65F6 DataFrame 1.0126 MHz I 12.524343s CAN None 12.524343s Ox6D9 Ox0 Ox3 \odot 0xAA Ox2311 DataFrame 1.0112 MHz I 12.776339s CAN None 12.775339s Ox1 \odot 0xAA 0x211 DataFrame 1.0112 MHz I 12.777340s CAN None 12.7775339s Ox1C 0x12 0xAA 0x7064 DataFrame 1.0129 MHz I 12.777340s CAN None 12.7778339s Ox6D9 0x0 0x3 \odot 0xAA 0x7064 DataFrame 1.0124 MHz I 13.029334s CAN None 12.777839s 0x6D9 0x0 0x3 \odot 0xAA 0x2311 DataFrame 1.0124 MHz I 13.030335s CAN None 12.778339s 0x6D9 0x0 0x3 \odot 0xAA 0x2311 DataFrame 1.0124 MHz I 13.030335s CAN None 13.030335s 0x1EC 0x112	None	1.0082 MHz	DataFrame	0x7D64	⊙ 0xAA	0x4	0x11235	0x1FC	12.522344s	one 🛆	CAN	2.522344s
L2.7753395 CAN None 12.7753395 Ox52 Ox1234 Ox1 Ox00 Ox3232 DataFrame 1.0113 MHz Mz MHz MHz	None	1.0126 MHz	DataFrame	0x65F6		0x2	0x0	0x6B3	12.523344s			2.523344s
12.776339s CAN None 12.776339s Ox1FC Ox1235 Ox4 OxAA Ox7D64 Dataframe 1.0088 MHz I 2.777340s CAN None 12.776339s CAN None 12.777340s Ox6B3 Ox0 Ox2 \odot 0x55 Ox65F6 Dataframe 1.0139 MHz I 2.777339s CAN None 12.777340s Ox6B3 Ox0 Ox2 \odot 0x55 0x65F6 Dataframe 1.0124 MHz I 3.029334s CAN None 13.029334s Ox524 0x1234 Ox1 \odot 0xAA 0x2011 Dataframe 1.0124 MHz I 3.030335s CAN None 13.029334s 0x524 0x1234 0x1 \odot 0xAA 0x7D64 Dataframe 1.0107 MHz I 3.030335s CAN None 13.031335s 0x6B3 0x0 0x2 \odot 0xAA 0x7D64 Dataframe 1.0107 MHz I 3.03335s CAN None 13.031335s 0x6B3 0x0 0x3 \odot 0xAA 0x2311 Dataframe 1.0103 MHz I	None	1.0112 MHz	DataFrame	0x2311	⊗ 0xAA	0x3	0x0	0x6D9	12.524343s	one	CAN	2.524343s
CAN None 12.777340s 0x683 0x0 0x2 ⊙ 0x55 0x65F6 DataFrame 1.0139 MHz 1 2.777330s CAN None 12.777340s 0x60B3 0x0 0x2 ⊙ 0x55 0x65F6 DataFrame 1.0139 MHz 1 3.023334s CAN None 12.778339s 0x6D9 0x0 0x3 ⊙ 0xAA 0x2311 DataFrame 1.0124 MHz 1 3.023334s CAN None 13.029334s 0x524 0x1234 0x1 ⊙ 0x0 0x3832 DataFrame 1.0107 MHz 1 3.03335s CAN None 13.03335s 0x1FC 0x11235 0x4 ⊙ 0x55 0x65F6 DataFrame 1.0107 MHz 1 3.03335s CAN None 13.03335s 0x1FC 0x11235 0x4 ⊙ 0x55 0x65F6 DataFrame 1.0107 MHz 1 3.28330s CAN None 13.03335s 0x6D9 0x0 0x3 ⊙ 0xAA 0x2311 DataFrame 1.0117 MHz 1 3.28330s CAN None 13.28330s </td <td>None</td> <td>1.0113 MHz</td> <td>DataFrame</td> <td>0x3E32</td> <td>⊙ 0x0</td> <td>0x1</td> <td>0x1234</td> <td>0x524</td> <td>12.775339s</td> <td>one</td> <td>CAN</td> <td>2.775339s</td>	None	1.0113 MHz	DataFrame	0x3E32	⊙ 0x0	0x1	0x1234	0x524	12.775339s	one	CAN	2.775339s
2.778339S CAN None 12.778339S OxfO OxfO OxfA OxfO OxfA OxfO OxfA OxfO OxfA OxfA OxfO OxfA OxfA<	None	1.0088 MHz	DataFrame	0x7D64	🕞 0xAA	0x4	0x11235	0x1FC	12.776339s	one	CAN	2.776339s
AUX20334S CAN None 3.032334S CAN None 3.03335S CAN None 3.032334S CAN None 3.284330S CAN None 3.284330S CAN None 3.285330S CAN None 3.285330S <td< td=""><td>None</td><td>1.0139 MHz</td><td>DataFrame</td><td>0x65F6</td><td></td><td>0x2</td><td>0x0</td><td>0x6B3</td><td>12.777340s</td><td>one</td><td>CAN</td><td>2.777340s</td></td<>	None	1.0139 MHz	DataFrame	0x65F6		0x2	0x0	0x6B3	12.777340s	one	CAN	2.777340s
3.003355 CAN None 13.0303355 0x1FC 0x1235 0x4 0x0AA 0x7064 DataFrame 1.0084 MHz Mz MHz MHz	None	1.0124 MHz	DataFrame	0x2311	⊙ 0xAA	0x3		0x6D9	12.778339s	one	CAN	2.778339s
3.0313355 CAN None 13.0313355 0x683 0x0 0x2 0x055 0x6576 DataFrame 1.0130 MHz 1 3.0313355 CAN None 13.0313355 0x609 0x0 0x3 0x0AA 0x2311 DataFrame 1.0117 MHz	None	1.0107 MHz	DataFrame	0x3E32	⊗ 0x0	0x1	0x1234	0x524	13.029334s	one	CAN	3.029334s
3.28330s CAN None 13.28330s 0x524 0x1234 0x1 0x0 0x322 DataFrame 1.0116 MHz MHz 13.28330s CAN None 13.28330s 0x1FC 0x11235 0x4 0x0AA 0x7D64 DataFrame 1.0091 MHz MHz MHz 13.285330s CAN None 13.285330s 0x6B3 0x0 0x2 0x55 0x65F6 DataFrame 1.0123 MHz MHz	None	1.0084 MHz	DataFrame	0x7D64	𝔍 0xAA	0x4	0x11235	0x1FC	13.030335s	one	CAN	3.030335s
3.283330s CAN None 13.283330s 0x524 0x1234 0x1 © 0x0 0x3E32 DataFrame 1.0116 MHz Integration 3.283330s CAN None 13.28330s 0x1C 0x1235 0x4 © 0xAA 0x7D64 DataFrame 1.0091 MHz Integration	None	1.0130 MHz	DataFrame	0x65F6		0x2	0x0	0x6B3	13.031335s	one	CAN	3.031335s
S284330s CAN None 13.284330s 0x1FC 0x11235 0x4 © 0xAA 0x7064 DataFrame 1.0091 MHz None 3.285330s CAN None 13.285330s 0x683 0x0 0x2 © 0x55 0x65F6 DataFrame 1.0123 MHz None	None	1.0117 MHz	DataFrame	0x2311	OxAA	0x3		0x6D9	13.032334s	one	CAN	3.032334s
Sachson Can None Sachson Can Out	None	1.0116 MHz	DataFrame	0x3E32	~	0x1		0x524	13.283330s	one	CAN	3.283330s
	None	1.0091 MHz	DataFrame	0x7D64	<u> </u>	0x4	0x11235	0x1FC	13.284330s	one	CAN	3.284330s
Timing View	None	1.0123 MHz	DataFrame	0x65F6		0x2	0x0	0x6B3	13.285330s	one 💙	CAN	3.285330s

Protocol Activity window provides the decoded packet information in each state and all packet details with error info in the packets. This gives the system level insight to the design teams. The individual protocol decodes windows based on selected interfaces ensuring easy view ability for design teams. The Selected frame in Protocol listing window will be auto correlated in timing view to view the timing information of the packet. Protocol errors will be highlighted to ensure designers are alerted to the sameeasily.

Powerful Trigger Capabilities

PGY-LA-EMBD File Configuration Tri	gger View Analytics Report About		- 0 ×
	9007 - View Analysis Helpon Addit D 自び回 論 圓 ⑦ ダ 🖗 � � Ø R R H 🖔 💭 🖂		
Trigger Type]
Auto	Pattern	O Protocol Aware	 Timing Parameter
Trigger - Auto Trigger	·		
If	Anything		
then	Ттідри		

PGY-LA-EMBD supports Auto, Pattern, Protocol Aware and Timing Parameter trigger capabilities. Users can trigger on any of the Protocol packets. Comprehensive Trigger provides the flexibility to monitor different conditions.

Analytics

Detailed analytics on various protocols to enable better analysis and provide additional insights to designers

Report

Report can be generated in PDF or CSV format with details of all the signal information, plots and custom details like name of the company, logo, tester name, date and time to ensure designers can document all details and share the report.

Y-LA-EMBD	HNOVATIONS SY-			-	0
Configuration Trigger View Analytics Report		5 X 5 @I			
Iode of Operations Standard Image: Standard Decision Advanced	Company Name	O PA Mode		0 la	A Mode
etup - LA + PA Mode - Sampling Rate	<pre><prodigy technovations=""></prodigy></pre>				
○ 125 MS/s	Company Logo		○ 500 MS/s	1000	00 MS/s
etup - LA + PA Mode - Protocol Selection	Select Logo File Project Name	UART I3C	SPMI	RFFE	
etup - LA + PA Mode - SPI Polarity and Phase	<pre></pre>				
Clock Polarity Low High Clock Phase Low High	<designername> Use the above information in Standard report</designername>				
etup - PA Mode - UART Baud Rate Selection	Select Views				
Baud Rate in (Decimal) 300 ✓	V Protocol View View				
Even	Select Range				
etup - LA + PA Mode - Channel Selection			Signal Threshold Settings		
(H) (H2 (H3 (H4 (CANCEL GENERATE	(H13) (H14) (H15) (H16)	Signal Threshold Settings	(CH7/CH8)	
(H)		CH3 CH4 CH3 CH6 0 0 0 0 0 0 0 0	Сня/сна) Сна/сна) Сна/сна)		
(iii) (iiii) (iii) (iiii) (iii) (iii) <	CANCEL GENERATE 0 <		(11/.G12) (013/G14) (015/C16) Voltage 1.57 v 1.57 v 1.57 v	1.8V 🗸	
Image: State	CANCEL GENERATE Image: I	0 0 0 0	(11/.G12) (013/G14) (015/C16) Voltage 1.57 v 1.57 v 1.57 v		
CHI CHI <td>CANCEL GENERATE 0 <</td> <td></td> <td>(11/.G12) (013/G14) (015/C16) Voltage 1.57 v 1.57 v 1.57 v</td> <td>1.8V 🗸</td> <td></td>	CANCEL GENERATE 0 <		(11/.G12) (013/G14) (015/C16) Voltage 1.57 v 1.57 v 1.57 v	1.8V 🗸	
Gen Gen Gen Gen Gen Gen SL O O O O Gen Gen SDA O O O O Gen Gen Gen MISD O O O O O Gen Gen Gen MISD O O O O O O Gen	CANCEL GENERATE 0 <		(117/С12) (113/С14) (113/C14) (113/	1.8V 🗸	

PGY-LA-EMBD Specification

Specification	Features
No of Channels	16 Logic Channels
State Speed	100MHz (Synchronous Capture)
Timing Speed	1GS/s (Asynchronous Capture)
Number of state clock support	Two, Flexibility to sample on rising or falling edge
Record Length	Smart Continuous streaming of data to HDD/SSD of hot computer
Voltage Level Support	0 to 5V with Flexibility to define the logic threshold
Waveform Plot	Plots waveforms with flexible configurable bus diagram
Listing View	List all the data samples at each sampling point
Trigger for LA	Pattern Trigger, Pulse width trigger, Delay trigger
Protocol Decode Support	I2C, SPI, UART, I3C, SPMI, RFFE, CAN, and CAN FD
Simultaneous Protocol Decoding	Yes, Users can analyze multiple protocols simultaneously. E.g., Users can analyze I2C, SPI, and UART bus simultaneously and capture the bus data and displays it in a time-correlated view with the corresponding time waveforms.
Protocol View with timingview (PA+LA)	Displays the protocol-decoded data with a high samplerate and timing waveform at the same time

API Support	Support for Automation of Operation using Python
Connector type	Flying Lead Probe with Female Connectors #16 Micro Grabber Test Clips as Optional Accessories
External Triggers	Trigger Out SMA Connector
Markers	Six, with delta information between two markers.
Views	Timing View State/Logic/Waveform Listing ViewProtocol View Bus-Diagram to display Protocol packets with timing. diagram plot Auto Trigger – Default (Trigger on anypacket)
Protocol Trigger Capture duration	Pattern Trigger ProtocolAwareTrigger- UART: Start bit, Parity Bit, Data SPI: MOSI Data, MISO data I2C: START bit, Address, Data, Address plus Data, ACK,NACK, Repeated START, STOP bit. I3C: Broadcast command, Ack, NACK, Directed, Slave address, read, write. SPMI: Command, Slave/MID, Byte count, Register address, Data. RFFE: Command, Slave/MID, Byte count, Register address, Data. CAN: ID, EXT- ID, DLC, Data Timing parameter trigger: Pulse width (Positive orNegative) Delay Trigger Smart streaming of Protocol Data to host HDD/SSD
Report	Report Generation in PDF and CSV format
Host Connectivity	USB 3.0 Type-C
Dimensions	115mmx90mmx25mm
Weight	300g

Ordering Information

PGY-LA-EMBD (v 1.0): Logic Analyzer for Embedded Interfaces.

Deliverables for PGY-LA-EMBD

PGY-LA-EMBD Unit. USB 3.0 cable. 5V DC Power Supply. PGY-LA-EMBD Software in CD. Flying lead probe cable with female connector to connect to DUT.

Optional Accessories

PGY-LA-EMBD-Cable: Flying lead probe cable with female connector to connect to DUT Micro Grabber Test Clips (#16 Nos).

Distributor: NCOMOTC 5 Rue de la Plaine 78860 Saint-Nom-la-Bretèche FRANCE +33 1 30 64 15 81 www.neomore.com

About Prodigy Technovations Pvt Ltd

Prodigy Technovations Pvt Ltd (www.prodigytechno.com) is a leading global technology provider of Protocol Decode, and Physical layer testing solutions on test and measurement equipment. The company's ongoing efforts include successful implementation of innovative and comprehensive protocol decode and physical layer testing solutions that span the serial data, telecommunications, automotive, and defense electronics sectors worldwide.